Go

* '.‘E,{)V\nw &’W“ ?{m; (=P ngreos G2 o5 92 - (C’IQ-»

SIMULATION OF A LEARNWG MACHINE
-~ FOR PLAYING GO

H. REMUS

IBM Laboratories, Boeblingen / Wuerttemberg; Germany

1. InTrRODUCTION ~

This report describes a program which -

supplies a minimum of information on the
game GO to the computer. It is an extension

of ideas which have already *been

described!). For the program, the rules of:
the game are given, as well as parameters .

connected with a possible. strategy, and

“directions for evaluating. successful and

unsuccessful moves for future behaviour.

The requirements for the program, and the
resulting analogies to learning processes are
discussed.

GO is especially suited to these expen-' ’

ments, because the rules .are. sxrnple o
mathematical theory of the game is known,
and it is impossible to caleulate all the
variants because of the multiplicity of courses
a game may take. -

- 2. RuLes oF GO

GO is a two-person game played on a
board*?®). Black and white pieces are set
alternately on a 19X19 hoard and there is
no limit to the number of pieces which may
be set. Horizontal and vertical rows of pieces

of the same colour form chains (fig. 1). A
" vacant point contiguous to a chain in the

horizontal or vertical direction is a degree of
freedom. A chain (or a single piece) with-
out any degrees of freedom is a prisoner; it
is removed by the opponent and its pieces
are counted up at the end of the game.
Making moves or taking prisoners is not
compulsory. Swicide is not allowed, ie. a
player may not make a move which will
deprive one of his own chains of all degrees
of freedom (a move is regarded as complete

.

only after any prisoners have been removed).
Areas in which the opponent is-not allowed
to set, or because of disadvantages does not
wish to set, are tal(cn.area:. Final scoring
at the end of a game and the decision about
loss or gain is made by adding up the
prisoners and the points in the taken areas;

" an areg being a chain of vacant points -

surrounded only by pieces of the same colour.
There may be areas which are surrounded
by pieces of either colour and in which

_ neither of the players may set without dis-

advantage (Seki). These .areas are- not

scored. A game js finished when ncither of =

the players is able or wishes to continue.

" chain of white pieces *
(O-4 plcces)
-no degrees of freedom™
chain of black picces
(@-16 picces)
~15 degrces of freedom -

KO-Rule

-1 Black—(a)

. . (takes W (b)) .

2 White—(b) forbidden

(I
Fig.1l. Definitions of Go.

There is one special rule, the so-called Ko-
rule which forbids a player who has lost a
single piece to take prisoner, in the sub-
sequent move, just the one picce by which
it was taken (this prevents 2 board position
being repeated indefinitely). »

The 19X19 board permits 386110172
different board positions in the course of a

game, -

3. KnowING PuASE oF THE MACHINE

For the present program, the board is

3

reduced to 11X 11 giving 3121~1057 possible
board positions.

Each position is described by’ three subsets
(sets of points occupied by black pieces, and
by white pieces, and the set of cmpty
points). The subsets are represented by
11X11 matrices, 4;, A., A; where each
matrix element corresponds to a point on
the board.

respective set, the matrix element is I, other-

If the point belongs to the

wise it will be 0.

By this separation of positions, and by

employing disjunction, conjunction, and
negation, as well as by introducing shifts
and an instruction for counting the ones in
a matrix, the rules of the game and the
formulae for the final scoring can be clearly
fixed.
“During the game (fg. 2), the main
program determines the permitted moves,
using the rules of the game. First of all, the
lexicon is searched to see whether a formerly
successful move is known for the current
position. The lexicon contains position
classes for which the same move was
successful. An operator results, which filters
the number of possible moves given by the
main program, retaining those which show
a maximum ratio of success. (If the position
cannot be found in the lexicon, the intial
number of permitted moves
unchanged).

remains

Main M Random

3Call 1 Conernt
Program 2 7

. ’
.
~ 2.C .
l Cu%y of m;yg>\\\°u‘ Knowing
e - Phase

Heuristic
Computer

—_— e e m o — - -

Learning _ Laarning
Element Experience Element

) Learning
Teagher I Teacher Phase

Fig. 2. Structure of the Go-machine

If, according to the lexicon, more than
one move is possible, it is left to the heuristic
computer to decide which move should be
made. For 16 parameters related to the
game, the values for any possible move are
calculated (e.g. the real and possible degree
of freedom of chains, number of prisoners
taken, distance from the last piece set by
the opponent, number of own and opponent’s
picces in certain areas), and the correspond-
ing success weightings are looked up in a
list. A linear combination of these success
produces a decision-making
criterion. The latter determines the most
favourable move, taking into account the

weightings

subsequent six half moves, by applying a

minimax procedure, If more than one move
is possible, then the random generator selects
the move t be made,

Analogous to learning processes, the moves
to be made in the initial stage will be
determined mainly by the random generator,
but subsequently and to an increasing extent,
they will be determined by the heuristic
computer, and eventually by the lexicon.

4. Succiss WEIGHTING

The rule for the final scoring is taken as
the criterion for the success' weighting of
each move, i.c. in each position it is assumed
that the game is terminated acknowledging
only those areas which are left at the end of
the game. Taking the values of the move
under review, as well as the subsequént five
half moves (with the weights 6, 5, 4, 3, 2,
1), 'a success curve is produced. (Thereby,
the weighted value of the last move is intro-
duced for the five subsequent imaginary half.
moves which are necessary for a calculation.)

The moves are divided into three groups.
All moves for which the success curve
increases are considered good, all moves of
the loser for which the success curve
decreases more rapidly than in the preceding
move are considered bad, and the correspond-
ing moves of the winner as meuzral. All
other moves are considered good for the

— 36 —

=27

R

R

——

TP

winner and neuiral for the loser. If a game
ends in a draw, both players are supposed
to be winners. This separation of the success
weighting into subgoals shows a certain
relationship to other learning programs?).

The above-mentioned weighting was used
for the test game in®), played on an 11X11
board. The game had 126 moves, and white
won. The following combinations of moves
resulted:

+ = -
White 61 y R
Black 516 2

In practice, only the 55th move (black)
did not correspond to the explanations. The
commentator called this move a good one
while it was shown as neutral by the success
curve.

5. Learning PHase o THE MACHINE

After completion of a game the latest
experiences are . evaluated. Due to the
interrelation of the success weighting of a
move and the final result of the game, it is
necessary to separate the program into
learning and knowing phases. It is quite
possible that ‘a weighting method could be
found which would not depend on loss or
gain; thus obviating this separation.

"The moves considered good are registered
in the lexicon; if the successful move is
identical with a move of onc of the existing
classes, and if 23 or more points coincide in
the 5X5 vicinity of the move, position 4
extends class K as follows:

K@ D=K ™A, for r=1, 2, 3.

Thus for the three subsets of a class, the
points have the following meanings for
concurrence with points of positions:

111 may be occupied

110 must be occupied

100 must be occupied by black
010 must be oaccupied by white
101 must not be occupied by white
011 must not be occupied by black
001 must not be occupied

Classes are considered equivalent, with
regard to possible rotations and reflections,
as well as with regard to permitted shifts
(points with 111 may be shifted cyclically
over the edge). If there is no lexicon class
in which the respective position may be
registered, a new class is established.

If bad moves occur in a lexicon class they
are climinated, together with the correspond-
ing board positions, as follows:

Kot — Kr(n) N (‘Zr U (T{s(ﬂ) N Et(n)))
for the three subsets with different 7, s, 2.

The parameters of the heuristic are caleu-
lated for all moves. If a move is considered
good, the success quotients 2/ of the lexicon
class and the table for the heuristic computer
are changed to (a+1)/(5+1). If the move
is neutral, only the divisors of the success
quotients of the heuristic computer are
raised by one. If the move is %ad, the
success quotients of the affected lexicon
classes and the heuristic table become
al(6+1).

After the learning phase has been -
terminated, the lexicon is reorganized and all
classes with a success ratio smaller than 0.05
are eliminated. Care is taken that equivalent

- classes are represented only once. The

number of remaining classes is restricted to
1000; if there are more than 1000 classes,
those with the lowest rate of applicability
are removed. Afterwards, the classes are
resorted to reduce the duration of calls during
the next game.

The machine learns not only by its own
moves but also by those of its opponent.

6. ProcrammiNG aNp ExampLis

The IBM 704 computer with a total of
32768 36-bit words was chosen for the
simulation. At the date of this report, pro-
gramming was nearly completed. The
programs are written in SAP fanguage
(Symbolic Assembly Program). There are
about 8000 inmstructions, constants and
general intermediate storage (including

input and output subroutines).

15,000 storage positions are provided for
the lexicon. Moreover, the table for the
heuristic computer requires 672 words, and
the minimax procedure 600 words. The
lexicon is sorted by means of two magnetic
- tapes.

The following formula serves as a random
number generator: :

127(j +a)—d 2%=f a;., + 5,

where j is the number of the move to be
made next, @, an input constant {an integer
greater than 0), 4 a positive correction
integer to keep the left-hand side of the
‘equation smaller than 2% (and greater than
0), f the number of possible moves, and &
the random number to be used. (For & the
following possibilities exist; 0, 1. .., f—2, f—
1.) :
" It takes about 100 msec to calculate the
decision factor for one move. The duration
of a total investigation of a lexicon class for
analogy to a position with possible shifts,
rotations and reflections is estimated to be
0.5 sec.

Some examples were simulated to test the
program. In the following results the per-
formance of the heuristic computer in for-
merly non-existing positions is shown. As
machine input the test game from *) was
chosen.

In Example 1 (fig. 3a) the machine play-
ing white, finds among the three permitted
‘moves al, bl and a3, the move bl. This is
obviously the most cffective of the three, for
in the case of black answering with al white
follows with a2, and the three black pieces
are taken. If white had chosen one of the
two other moves, black could have prevented
the loss.

[

@ X
o X
T
D D
1

Fig.3a.

In Example 2 (fig. 3b), with its last move
¢3 black has attacked the white piece on c2.
Of the 19 possible moves in the area adf,
1-4, white selects the move el. This is not
as secure as d2 but white is able to save ¢2
by following black’s answer of d2, with cl.

Before being familiar with the test game,
the machine would of course, have reacted
with random moves.

7. FmnaL Remarks

The main object of the initial investiga-
tions with a completely tested GO program
should be to answer the following questions:
1. What is the course of development of the

lexicon? Does the above-mentioned
method suffice for forming classes to
mark a maximum number of favourable
situations and moves?

2. How is the weighting table influenced by
experience? ie. Do really significant
differences emerge in the elements of this
table, or do functional relationships
result? It is quite possbile that some
alterations may be made with regagd to
the selection of parameters. e

3. Does the method described for numerical
success weighting correspond in general

_to the human analysis of a game? This

question affects the first two points, ie.
an insufficient separation into subgoals
would mean—from the start—a negative
answer to questions 1 and 2.

It is almost certain that a repetition of
particular erroneous moves can be eliminated
by means of statistical elements. Success
criteria and rules for the utlization of ex-
periences must be found.

The learning procedures under review are
not only concerned with rote learning®); the

recognition of the position characteristics in

the lexicon classes, and the different signi-
ficance of the employed parameters could
be described as learning by means of com-
prehension?), following given directions, of
course. ., The stored information changes

— 38 —

continuously; thus the learning process is
reversible. .

The program should be considered in
terms of these analogies to learning pro-
cesses and not of its ability to play GO.

8. REFERENCES

1) Remus, H.: Lernversuche an der IBM 704.
Lernende Automaten, Munich (1961) 144,

2) Takagawa, K.: “How to Play GO”. Japan,
1956, - i

3) Ducball, F.: “Das Gospiel”. Minden/Westf.,
1960. .

4) Newell, A., . C. Shaw and H. A. Simon:
Report on a General Problem—Solving Program.
Information Processing, Paris (1959) 256.

5) Samuel, A. L.: Programming Computers to
Play Games. Advances in Computers, New
York (1960) 165.

6) Zemanck, H.: Beschreibung von Lernvorgin-
gen. Lernende Automaten, Munich (1961) 9.

" ABSTRACTS

The rules of GO are formulated in mathematical
language so that a program for playiug the game
can be developed. A precise determination of the
best move in a given situation is not possible how-
ever, because of limitations of time and storage. By
applying three operators successively—a lexicon, a
heuristic computer and a random npumber generator
—that move is selected which, according to present
expericnce, is the most favourable of those permitted.

The lexicon and heuristic computer are built up
and continuously improved by the machine itself,
using the success or failure of previous moves. (The
success of a move is deduced from the rules for the

" final scoring which are valid for each position).

Thus, the ecffectiveness of these two operators in-
creases in the course of time analogously to learning
processes; i.c. during the initial games the moves
will be determined mainly by the random mumber
generator, but subsequently and to an increasing
extent, by the weighting table of the heuristic com-
puter, and eventually by the lexicon. With the aid

‘of examples it is shown how far the cxperience

gained will improve the quality of the game in
formerly unencountered situations.

DISCUSSION

H, C. Rarz (Canada). Do you know, or can you
predict, how the performance of your machine com-
pares with that of a human playing the same game?

H. Remus (Germany). 1 am not ready to predict
this.

N. Bracuman (USA). Does the program tell the
computer when the game is over? If so, does it

always. do it correctly and does it count the score?
" H. Remus (Germany). The machine does the
final scoring, No method has yet been found to see
the end of a game before all the areas are definitely
taken.

N. TeureLHarT (Austria). If two computers,
supplied with the same information, play against
each other, would you expect them to improve their
knowledge of the game?)

H. Remus (Germany). 1 expect them to increase
their knowledge as long as random moves were
involved.

W. PaveL (Germany). Is there any possibility of
evaluating the initial moves? Is it possible to verify
that the stars, the so-called “Hoski” occupied in 2
handicap game, are optimal points? An interesting
problem is the coherence between handicap and
degree. If two opponents of equal degree play a

handicap game what wiil be the outcome? The
exact value of any handicap is not known. The
difficulty in evalvating this statistically in games
ameng men is that you cannot find two players of
exactly equal degree, and also that one player will
not be equal in degree in two different games. May
it be possible to find the value of a handicap with
the aid of such a program?)

H. Remus (Germany). The machine may, of
course, play a handicap game but there is as yet
no intention of solving the question of optimal
points. I realize that there are difficulties in téaching
the hcuristic computer the initial moves, but the
lexicon will handle them. o

M. Euwe (Netherlands). Tt seems to me that
learning principles can mainly be applied to a game
with uniform pieces and standard patterns and not
to a game such as chess. Exactly the same position
rarely occurs in chess, while similar positions may
have very different possibilitics. Even if it were
possible to store the positions the machine had lost,

“it would not be easy to decide which was the

critical move which caused the loss of the game.

H. Remus (Germany). 1 agree.

— 39 —

