
AANNS Explained

PREFACE

This document is an informal explanation, in (intelligent) layman's terms, of the principles of the 
Acolyte Artificial Neural Net System concept. I will try to explain why I think that the AANNS 
concept is a major breakthrough in the field of Artificial Intelligence (AI), and why I am confident 
that the specification (contained in "AANNS SPEC.doc") is sufficient for producing an effective 
product.

My far from trivial task is to convey the "new". If the "new" were easy to explain then it would 
have already happened! The revolutionary AANNS concept was formed from a collection of 
coherent ideas honed over many decades. To me, these ideas are now utterly familiar and obvious 
but to you, the reader, they may very well appear to be counter-intuitive and the relevance of some 
of the parts, at first sight,  may not seem to relate to the whole. I hope not! I will try my very best to 
explain things in small steps and ask for your patience in building up "the big picture".

If you already have some technical insight into neural nets, please be careful not to assume that the 
AANNS is going to be some minor variation to the current technology. My assertion is that 
academia has missed the point! I have had to go back to reinvent the basics in order to make a 
neural net system work as the original concept intended, i.e. as a general applicable learning / 
problem solving system.
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WHAT IS INTELLIGENCE?

The ANNS is an artificial intelligence system designed so as to exhibit many of the features that we 
commonly refer to as "intelligence" thus being capable of performing many cognitive tasks that at  
the moment only humans can perform. But the term "intelligence", even in the field of AI, means 
different things to different people, so, for a coherent logical design, it is an essential first step to 
come up with a specific practical definition.

In everyday English, the terms "intelligence" and "intelligent" are used comparatively, most often in  
an implicit context. For instance, the sentence "She is intelligent." expresses an opinion that a 
specific person is intelligent compared with others. Just which others depends on the context of the 
sentence including who said or wrote it.

Generally people, other than computer programmers, judge the degree of intelligence of computer 
programs by the results produced. If the person judging the program feels that they, themselves, 
could not produce as good a result, they tend to judge favourably. However, the opinion of anyone 
in receipt of a bill for zero pounds and zero pence is often that the computer program involved is 
really stupid. This latter evaluation is probably more appropriate.

There is a philosophical expectation in some professions that there exists the same underlying 
quality called intelligence which largely determines the quality of results in any cognitive system,  
be it human or machine. Hans Jürgen Eysenck, the British psychologist, even invented the 
Intelligence Quotient (IQ) to aid uniform measurement of this quality, (albeit at the time without  
consideration of machine intelligence). In recent times, the idea of one universal quality has fallen  
out of favour to some extent and has been supplanted with ideas based on "different intelligences". 

Avoiding the trap of specifying a general quality of intelligence, I am delighted to have come up 
with a technical definition which makes sense when comparing similar systems. In informal terms, 
a high degree of intelligence is demonstrated by "doing a lot with a little knowledge and without 
much effort". Formally, in my more precise technical definition, intelligence is measured as :

The degree of scope for appropriate behaviour of an agent for any 
given set of knowledge and any given amount of processing used by 
that agent.

In the context of giving answers to problems, "appropriate behaviour" refers to producing solutions 
which are useful rather than perfect (although perfect is best). For example a slightly slow clock is 
is almost as useful as a perfectly synchronized one.

The scope refers to how wide the arena is in which the agent can perform usefully. Where we  often 
notice severely limited scope is when computer programs fail to match the versatility of our own 
abilities. We want a Google search to understand the context of our search, but all it can do is match 
words to web sites without any semantic understanding and thus produce thousands of unwanted 
pages.

Counter-intuitive as it might seem, the more knowledge needed to provide a solution to a problem, 
the less intelligent the agent. Attempts are being made to ameliorate the lack of intelligence when  
searching the web, by accruing large databases of questions and appropriate answers as judged by 
the human users, but whatever the advertising might claim this, by my definition, does not amount 
to intelligent software.

Also counter-intuitively, the more processing needed to provide a solution, again the less intelligent 



the agent. For instance, the current crop of highly successful chess programs, by this definition, are 
not very intelligent because they rely on massive computing power. 

The technical definition above  informs my quest for truly intelligent software that can compete 
with and then out-perform the human agent.



THE VISION

The computer revolution, which we are still living through, has largely automated clerical tasks and 
routine machine control, but has yet to make a major contribution to tackling tasks where human 
cognitive flexibility is an essential ingredient. Over more than a century, agricultural jobs have been 
drastically cut, and the number of manual manufacturing jobs is now diminishing, whereas clerical,  
managerial and other jobs requiring communications with other humans have burgeoned.

When it was realised that not every problem could, in practice, be solved by computer programmers 
laboriously codifying a response to every possible input, academics in the field of Artificial 
Intelligence (AI) were charged with finding ways to simulate the human cognitive abilities. The 
anticipation was that a mechanised robot could be designed to completely supersede the human 
operator within a few decades. However, compared with early expectations, AI has massively 
underachieved. Everyday tasks which humans perform with ease proved, on closer inspection, to be 
highly complex and far more difficult to simulate than at first thought. Nowadays AI academics are 
less ambitious, seeking minor advances in the expectation of steady overall progress toward a 
genuine all-dancing all-singing thinking machine. In contrast, my assertion is that AANNS is a big 
leap forward.

My study of human cognitive processes has convinced me that most of the gubbins lies in regions 
of the subconscious brain, each region providing a specialized answer service narrowly related to 
each separate cognitive skill. For example, a professional punter might habitually ask themselves 
which horse will win the race, and this, if accurately directed, will trigger a response from the 
relevant specialist part of the brain. Not that this is easy to do - there are a million and one ways for 
the pathway to go wrong,  so why suspect this mechanism? The answer comes from studying 
people with brain damage. When a hidden mechanism is working well, there are many possible 
ways in which a mechanism might operate. But when a mechanism goes wrong, then the underlying 
workings are often revealed. In this case, the proposed model is highly consistent with the 
capabilities of autistic individuals known as "savants". Without the confusion of competing tasks 
(many social), common to the ordinary multi-tasking person, in contrast, savants demonstrate a 
simple single minded and direct access to the part of their brain dedicated to their talent.

So the idea with the AANNS is to simulate the cognitive powers of a savant with the added feature, 
because it is artificial, of being able to be trained to perform a vast variety of cognitive tasks.

We now come to the question of how to simulate the gubbins in the dedicated brain region. Apart 
from seeing neurons and axons exhibit some sort of electrical messaging, the technology does not 
yet exist to examine what is really going on at a detail level, nor to relate brain activity to exhibited  
behaviours except in the crudest fashion. Instead of trying to copy the brain directly, we must look 
to the suitability of artificial neural net technology. I think that our brains are effectively an  
organisation built from biological neural nets - but I cannot prove this. However, I can argue that 
collections of artificial neural nets each of quite modest size should theoretically have the power to  
simulate the functions of the biological equivalent.

My starting point is to use evolutionary logic. In evolution, vast tracts of time allow simple 
components to evolve into structures that exhibit complex behaviours. The crucial idea to grasp is  
that very simple components can interact in very many ways to give a huge number of effects, and 
this is sufficient via natural selection in a step by step progression to produce the results we see. 
Thus we can be confident that underlying the complex behaviour of evolved mechanisms lie very 
simple components.



Artificial neural nets are made from nodes and links much in the fashion that neurons and axons 
make up the main component types in the brain. The number of possible ways of connecting nodes 
and links are legion. It seems entirely probable that they are theoretically capable of expressing the 
most complex cognitive behaviour. (Actually this has been formerly proved mathematically.) The 
not inconsiderable problem that remains is how to train a neural net to form the required specific 
structure to solve any given type of problem presented to it.

An examination of the commercial neural nets on offer, and a laborious study of current academic 
papers, does not find systems that are effective except in limited circumstances. The current neural 
nets seem to do well with some "simple" tasks but fail dismally if presented with a "complex" 
problem! I shall return to this subject later, but, for now the point is that, in order to have any 
chance of achieving my goal, I was forced to go back to basics to "reinvent" the neural net afresh.

By making the system generally applicable, in principle, this allows such systems to replace much 
of conventional computing. More importantly, although not quite stretching to the walking, talking,  
thinking robot just yet, it greatly expands the scope of potential applications that a computer can 
handle.

In the next section I will try to explain a simple conventional neural net system, and list the defects  
found in all publicised current systems that limit their usefulness.



A QUICK INTRO TO NEURAL NETS (with minimal maths)

The above diagram shows the schematic for a very simple artificial neural net. It consists of three 
input nodes A, B and C, connected by links to four intermediate nodes D, E, F and G, connected 
by further links to two output nodes Y and Z. Each column is referred to as a layer, so this 
schematic shows a three layer net. Very simple neural nets can have just an input and output layer - 
the minimum to receive and transmit the processed data. However most neural nets need one or 
more "hidden" intermediate layers in order to express more complex logic.

When fully trained, the resulting neural net (which is dedicated to the one specific application),  
when presented with data by a computer program called a neural net interpreter, produces useful 
processed numerical output in response to the numerical input in the format dictated by its specified 
structure (referred to as a schema). The input data is presented one record at a time to produce one 
related output record at a time. This is referred to as the neural net interpreter expressing the data.

Input nodes accept number input and transmit each number to each subordinate link. Each 
individual link has a value associated with it called a weight. This is used to multiply the incoming 
number to give a product passed to the next layer of nodes as directed by the links. Each 
intermediate node in the schematic above will receive the sum of the products of its superior links. 
If this number exceeds the threshold for the particular node, that node will transmit the number to 
its subordinate links. Thus a set of numbers are produced at the output nodes which constitute the 
answer given to the specific input.

Each neural net starts out life with default values assigned to thresholds and weights. For most 
conventional systems the number of levels, intermediate nodes and links are manually assigned. 
The weights and thresholds are then subjected to a training process.

A neural net trainer computer program is given a set of representative data, records with input 
values along with their corresponding required output values. Each record is expressed (via the 
neural net interpreter) to produce output that is very probably in variance to the required output.  
Very small trial changes are then made to the thresholds and weights of the fledgling net so, that as 
when the record is expressed again, the new output values are slightly closer to the required answer. 



A repetition of this process gradually improves the overall performance of the modified net. Ideally 
the end result is a net which gives perfect answers to the training data. However, there is no 
guarantee that "perfection" will be achieved in which case, after giving the process plenty of time, 
the best net is selected to satisfy the required application.

An added element to training is the automated allocation and organising of intermediate nodes,  
links and levels. With manual allocation, too few nodes and levels restrict the logic capability of the  
net, whereas allocating too many nodes and levels allows the net to "remember" each training 
example by rote and thus failing to capture the more general logic.

How well the resulting net performs on novel data is measured against a reference set of data 
reserved for the purpose.

From the above account you may discern that training is the key element of a neural net system. As 
yet, we have barely scratched the surface. We will return to the subject in some considerable detail  
later on.

Having grasped some of the mechanics, we now turn to neural net applications. We will consider a 
simple, not very commercial, application as a first example. Suppose we want a computer program 
to play noughts and crosses (tic tac toe). Technically the most accurate solution would be a 
computer algorithm using the technique of exhaustive lookahead. However for the purpose of 
demonstration, we can collect examples of optimal play and use neural net software to train a neural  
net. With the simple mechanism described above, we could allocate nine input nodes to represent 
the noughts and crosses board before the move and allocate nine output nodes to indicate the next 
optional best plays. Input values of zero, one and two could be specified for "empty", cross and 
nought. Output values of zero and one at the appropriate nodes are sufficient to indicate the optional 
best moves. There is some non-trivial work involved in collecting the data, putting it into an 
acceptable format for the neural net trainer, and programming a graphics user interface (a noughts 
and crosses board). However, at least we do not need to know how to program the game playing 
algorithm. That bit is magically solved for us!

The important thing to grasp is that the input and output values can be made to represent anything! 
Albeit some work is needed to translate the numbers into whatever is convenient for the user.

"I think there is a world market for maybe five computers". Attributed to Thomas J. Watson, Chairman of IBM, 1943

"First we thought the PC was a calculator. Then we found out how to turn numbers into letters with ASCII - and we 
thought it was a typewriter. Then we discovered graphics, and we thought it was a television. With the World Wide Web,  
we've realized it's a brochure." Douglas Adams

Initially there was a staggering lack of imagination as to the application of the newly invented 
computer. People failed to realise that numbers can represent almost anything and thus failed to 
understand that, in principle, a number manipulating/calculating machine can be made to do just  
about anything. Deja vu! Owing to current limitations,  neural net technology is seen as having a 
rather limited potential in the future. Currently, where they do find a role, it is in the gaps where 
conventional programming performs badly. Typical applications are face recognition, speech 
recognition, handwriting and printed text recognition,  lip reading, automated surveillance, vehicle  
control, process control, autonomous robot control, virtual reality interaction, game-playing, 
medical diagnosis, financial applications, email spam filtering.

The main defects of current neural net systems are :

• owing to the exponential increase in the number of configurations that can be permed from 



trial connections as the number of potential connections increases, there is a severe 
limitation on the capacity to train nets for complex problems.

• an approach to training which, only after much expended effort, eventually discovers that a 
problem is too complex by failing to generate a useful net.

• a lack of automation in training that requires the developer to experimentally set numbers of  
nodes, links and levels or, alternatively, use automated systems that perform poorly.

• the propensity of nets to latch on to arbitrary factors whilst missing the main logic required 
to provide the solution to the problem inputs.

• a general poor level of performance accuracy which severely limits the appropriate use of 
neural nets to a small selection of types of application.

Academic research is largely aimed at making more and more specialist types of neural nets, and 
faster training. Both aims promise short-term gains but I have decided to think long-term and row 
precisely in the opposite direction, i.e. I am seeking more generally capable systems which 
concentrate on producing neural nets trained to a high degree of accuracy. Within the bounds of 
practicality, the speed of training is  less important.

The following sections describe some of the new AANNS concepts that together overhaul the 
current neural net technology putting to rights the common defects. I cannot guarantee that there 
aren't existing neural net systems somewhere that contain some of the invented features. However, 
having read many current academic papers and articles on the subject, I believe that the AANNS 
overall concept is probably decades ahead of the field.



THE PARSIMONIOUS STRUCTURE PRINCIPLE

Because the behaviour of complex applications can arguably be characterised as the result of the 
combination of interactions between simple components, for each individual application, it is 
mathematically highly probable that there is a single minimal sized configuration of net that forms  
the perfect solution, i.e. a compact neural net which always gives appropriate output. This structure 
must be far more compact than one that, although giving perfect answers for the training data, fails 
to find the generality that would always give the correct answers to novel data. Referring to the 
definition "The degree of scope for appropriate behaviour of an agent for any given set of 
knowledge and any given amount of processing used by that agent", we can be encouraged that 
the compact neural net not only exhibits a wider range of appropriate answers, but does so using an 
efficient structure that uses less processing because the volume of processing is closely proportional 
to the number of links in the trained neural net.

This consideration leads to two major features in the design of the AANNS which greatly enhance 
the performance of the resulting trained nets. The first feature is, throughout the training process, to 
"choke" the dynamic expansion of the net (i.e. when adding links, nodes and levels). At each stage 
of training, limiting the expansion of the net has the added benefit of limiting the training time 
which is, very roughly, exponentially proportional to the number of modifiable links. Note that as 
the training progresses some links and nodes become settled and avoid further trial and error 
modification. Because expansion can cause the training time to grow exponentially, too much 
expansion can put effective training beyond feasible time limits, even if using the very latest  
supercomputer.

The second feature is, in phases, to prune those links and nodes that have the least positive effect on 
the results from expressing the set of training data. Although this temporarily reduces the training 
data set performance, it can often actually improve the overall performance if tested against novel  
data. However, the real point is that it allows alternative trial structural modifications which 
statistically may have more general applicability. This pruning process is expensive in computer 
processing terms (although not exponentially so!), but keeping training times low is second to the 
primary aim of routinely achieving trained nets that perform accurately.

The idea for pruning came out of an understanding of how progressive evolution must work. 
Evolution can be said to progress when the evolved organisms can prosper in more challenging 
environments. (Usually that challenge is provided by other competitive evolved organisms.) For this 
to happen, a level of attrition is necessary favouring the survival of those genes which are generally 
more useful compared with those which are less so. Note that in long periods of benign 
environmental stability, via mutations, organisms slowly adapt to niche environments, but then such 
organisms tend to die out when the environment eventually becomes unstable. There is an optimum 
rate of development where the environment changes regularly but not by too much (which would 
result in mass extinctions). Mutations need to be given some time to bed in, but then for long-term 
survival they benefit from a harsh examination as to their general suitability, thus "phased pruning" 
is in order. An understanding of this process leads to the realisation that there is a strong association 
between an evolved organism that can survive in many environments, with a trained neural net that 
can perform effectively against a wide range of novel data.

The AANNS pruning method can be allowed to be extremely harsh because if it oversteps the mark, 
unlike in natural evolution where species become irrevocably extinct, the previous trained stages of 
the net can be resurrected to reverse the detected performance degradation of the over-pruned 
version. This, in the overall scheme, gives a more rapid rate of progress than a more gentle 
approach.



THE PARSIMONIOUS USE OF TRAINING DATA PRINCIPLE

There are two main aims when coming to the use of training data. The first is to achieve a high 
degree of performance, i.e. the resulting net should give a high percentage of correct answers to 
novel data. The second aim is to train efficiently, i.e. minimise the training processing time 
necessary to acquire the desired level of performance. How the training records are presented to the 
neural net trainer can greatly effect the success or otherwise of the training process. Simply cycling 
around the training data set can merely produce a repetitive cycle of modifications, effectively  
going nowhere. A rapid training process giving perfect answers for the training data will be likely to 
perform badly on novel data, and once a training record gets correct results, it no longer has any 
power to modify. This is all quite tricky stuff!

Conventional training systems present each data record in turn and allow a repetition factor to be 
manually specified to determine how many modified expressions are tried before turning to the next 
record. Once all records are processed, the cycle is repeated until satisfactory progress has been 
made. The manual allocation of a suitable repetition factor requires the user to experiment - a  
somewhat time consuming and potentially unrewarding exercise. It all smacks of empirical 
experience without much of an underlying mathematical theory - all a bit of a black art!

Major aims of the AANNS design are to make everything, that can be, completely automated, and 
to use new training techniques that are both properly understood and also have a high probability of 
working. Once handed the training data set, the AANNS attempts to progressively drain the 
maximum training value from that data. Because the process can be lengthy, it can be manually 
truncated at any point and the extant results used. Alternatively the system can be allowed to 
continue to make progress until it decides no further progress is mathematically likely.

The first step is for the ANNS to automatically reserve a generous proportion of the training records 
(referred to as the internal set) in a reference set. (I am skipping over the tedious detail as to how 
the AANNS selects which individual records go into which set.) The remaining records in the 
internal set, which will be used in the actual training process, are referred to as the load set. At 
stages throughout the lengthy training process the reference set is tested to reliably evaluate the 
performance of the current net. (Obviously data actually used for training is tainted for this 
purpose.) AANNS goes the extra mile and automatically optimises the selection and size of the 
reference set :

Each neural net performance evaluation is modified to give a lower bound according to a measure 
of error dependent on the number of records in the reference set - the more reference set records, the 
smaller the margin of error. The AANNS can then expand the load set by robbing the reference set, 
always remembering that the margin allowed for error in the performance calculation will be 
increased as the reference set decreases. At some point the AANNS can detect the mathematically 
correct balance between the number of reference and load set records in order to maximise the 
lower bound performance evaluation figure and thus present the user with the best net possible.

AANNS automatically splits the load set into an active set and a pending set, then further 
subdivides the active set into a current active set and a recent active set.

At any one time, AANNS uses only the current active set for training. AANNS strives to keep this 
set as small as possible commensurate with making progress in improving the performance of the 
trained net. This wrings the maximum training value from each record whilst fortuitously improving 
the speed of each training cycle. (Note that when a training record gives completely correct results  
for the current net structure it can no longer indicate any improvement.)



The recent active set is where training records are temporarily reserved when they provide no 
immediate training value. This is an important twiddle because not only does it help eke out the 
training value, but it also allows difficult records to be sidelined avoiding a stall in the upward 
training progress. This means the net can be effectively trained even given the odd invalid data 
examples.

The pending set holds all those records not yet used in training. It is heavily relied on as a pseudo 
reference set in order to frequently evaluate the progress being made. According to results the 
course of training is altered, and this statistically means there may be, albeit indirect, influence upon 
the trained net, thus it cannot be said that the pending set is a truly independent untainted reference 
source. But the pending set is good enough for the purpose of working progress and this allows the 
proper reference set to be used without feedback influencing the training processing, in order to be 
certain that the evaluation of the final best net is reliable.

The selection of the records for the current active set is a vital concern because often the amount of 
training data is somewhat limited and must be used to the maximum, not wasted by a quick training 
strategy. The aim is to select the lowest number of records, yet still make progress in a trial of what 
is called a "training expedition" (more later). According to the target, records may be transferred to 
or from the recent active set to the current active set. Additionally if necessary, and after benefit  
from numerous contraction and expansion (of the current net structure) is exhausted, new records 
from the pending set are added until progress is continued. When the current load set is effectively 
used up, it can be added to by robbing the reference set until further progress is calculated as 
unlikely.



TRAINING ASCENTS AND EXPEDITIONS

A major feature of AANNS is a logical approach to maximise the chance of finding the peak 
performance for any one net structure. The concept is an extension of the idea, expounded by 
Richard Dawkins, of  "Climbing Mount Improbable".

If you imagine the peak of Mount Improbable as representing the DNA genome of an organism, the 
plain from which the mountain rises as representing the DNA genome of simple life forms, and the 
points on the slopes as contiguous DNA genomes in between, then, because the organism has 
evolved, there must exist a gentle continuous path from the base to the very top defining the 
evolutionary history of that organism. (This path may be long and involuted, but evolutionary time-
scales are big enough to accommodate such.)

Now replace the DNA genomes with the values of the variables, such as link weights, (usually 
referred to as components but sometimes as attributes) in an AANNS neural net plotted against 
the performance as the height and you have an analogous situation. (The fancy name for this is the 
solution attribute topography.) If this is hard to visualise, imagine just two variables plotted 
against each other (x and y axes), and against the performance of the net at each point - the z axis 
representing the height. The fact that there are likely to be many more variables than just two,  
makes the graph multi-dimensional but the principal of a contiguous landscape still holds 
mathematically.

In our imagined landscape, there are performance peaks, ridges, troughs, foot hills, plateaus and low 
lands. Now imagine the whole landscape is covered in cloud and all you have is a limited number of 
altimeters on parachutes which, when dropped from above (assume perfect vertical descent), can 
report back both the height and the direction of slope at the landing point. (Note that these 
limitations reflect the serial processing capabilities of a PC, unlike the parallel processing 
capabilities of an organic brain.) What is the best strategy to find out where the highest peak is?

Given that the terrain might be a mixture of features, all in many dimensions and to different scales,  
the search method has a lot to cope with. The secret lies in forming simplified trails, upwards from a 
drop point to a peak (via a training ascent) and extended downward to a base. Then there is a 
slightly greater statistical likelihood of there being a bigger peak between peaks that are closer to  
each other than to any other trail path or trail base. Otherwise, there is a lesser chance of there being 
a bigger peak very near to an existing trail and a slightly greater chance of a fresh upward slope at a 
commensurate distance away from existing trails. Thus subsequent "modified random" drop points 
can be chosen, either between peaks or an optimal distance away from existing trails. As the 
landscape fills up with trails of varying lengths, the chances of finding new peaks diminishes and at 
some point a statistical judgement can be made to abandon further exploration. The contour 
diagram below (after five drop points D1 to D5) shows how the base (B) to peak (P) trails 
progressively occupy the space in a useful fashion.



Each trail contributes a drop zone and an exclusion zone as shown in the above diagram. This 
pattern arises from a method which greatly simplifies the calculations with the understanding that  
here approximations do the job just as well. Rather than using complex multi-dimensional 
geometry, all distances are approximated by summing the absolute differences between the 
coordinates (expressed in training step units - see below) of any two points. For example, the 
distance between P[3,5,0,9,4] and B[2,6,1,7,8] is 3-2 + 6-5 + 1-0 + 9-7 + 8-4 or PB = 9. To 
determine whether a potential drop point is within a particular trail's drop zone or an exclusion 
zone, first distances DB, DP and DH (where B refers to base, P to peak and H to the halfway point 
between B and P) must be calculated. A further set of coordinates for A, the point on the trail with 
average height (performance) is needed. As shown in the diagram below, the potential drop point is 
in the exclusion zone if DP is less than PA, or DH is less than half PB, or DB is less than half PB. 
Otherwise, the potential drop point is in the trail's drop zone if DP is less than PB and also DB is 
greater than PB, or DB is less than PB and also DP is greater than PB. However, if BA is less than 
PA then the B and P points must be transposed. Then the potential drop point is in the trail's 
exclusion zone if DB is less than BA, or DH is less than half PB, or DP is less than half PB.



In general, drop points are selected randomly from trail drop zones that do not overlap other trails'  
exclusion zones. The exceptions are the first time (of course!), and when two peaks are closer to 
each other than any base or halfway point whilst also greater than two training step units apart, in 
which case the drop point is made midway.

The concept of training step units is needed to unify the disparate scales used by the different neural 
net variables (components) so the above scheme can work. The primary idea is that each variable 
must be scaled each by an individual factor such that, on average, the effect of adding or subtracting 
a fraction of each scaled unit on the change in performance of the net is roughly the same. The only 
way to achieve this is by trial and error and amassing the necessary statistical data. The method 
used by AANNS produces this data as a by-product of the training ascents.

The essence of this training step alteration is that occasionally (as determined by a statistical  
optimisation), a training accent is repeated twice, once with active component training steps  
increased so as to potentially save a single step, and once with the active components decreased by 
the same margin. For each trail, basically one of two outcomes are possible: As is likely in early 
iterations, an entirely new path can be formed, in which case, if the performance level reached is  
higher than the other two paths, both the path and the new training step sizes are adopted. If 
however, the original path is repeated (approximately) then the appropriate training step sizes are 
adopted only if there is an improvement (reduced number of steps) on the previous set of step sizes. 
Note that reducing the training step size can lead to an improvement by reducing the number of 
missteps, where the algorithm attempts to re-establish the path assuming that the ascent has 
overstepped the peak. An important twiddle is that the increase/decrease in training step size is  
randomly varied by a slight amount so that the correct relationships between component training 
step sizes are allowed to evolve.

I suppose I'd better explain what an active component is. This terminology comes from the 
consideration of the AANNS back-propagation method. Oops! Now I need to explain back-
propagation!

Back-propagation is the process applied to the current net for each training record used in a 
training ascent. It identifies the adjustment needed for each component (such as link weight) so that 
the output node target value can be achieved or at least be improved upon. It proceeds from the 
target output node to its superior intermediate nodes, establishing new targets for the latter, which 
are then in turn used to propagate back to their superior nodes and so on. Those components that are 



identified as able to contribute towards an improvement are termed active and those identified as 
incapable are termed inactive.

An individual training ascent back-propagates each record in the current active set in order to 
determine small changes to the current net's link weights (and exponent quantities) which are likely 
to improve the current active set's performance score. Each "improvement" is applied until no 
further progress can be made. There is a statistical association such that improvements in the current 
active set score tends also to improve the pending set score (here used as a surrogate reference set). 
However, there is usually a point in the sequence of improvements such that the net is over-trained, 
i.e. the net is trained too specifically for the current active set, away from the generality required. At  
this point the trail is truncated. By using only the small current active set, the training is efficient  
and a level of variability is achieved, whilst the inertia of the current net structure along with the 
testing against the pending set, provides the statistical pressure for upwards evolution.



MATCHING NET LOGIC TO DATA TYPES

Many neural net systems concentrate on a limited type of input data, but for a generalised system it  
is important to cater properly for a wide range. The temptation is to rely on the net to sort out the 
significance of the numerical data but this can degrade performance, and what is worse, can find 
spurious logic in data when the magnitude of the numbers is actually arbitrary. The other concern is 
the wasteful non-use of the information present associated with the topology of the data in 
arrangements such as grids used for game playing.

An example of matching structure to input types is, rather than allocate arbitrary numbers to data 
such as place names, AANNS caters for an identity type. Such items of data are actually ignored as 
not statistically significant if there are too few records present with the specific identity. Otherwise 
an indicator binary node is automatically assigned for the specific value.

It is time to revisit the noughts and crosses (tic tac toe) application example. This is not such a 
challenging problem for a really good neural net system so how the data is presented to the net and 
the precise structure of the net may not be crucial. However, it makes for a good illustrative 
example. Always remember that the facilities described here are for general purpose and not 
designed specifically for our tic tac toe example.

For a simple neural net system, one would probably have to specify nine numerical input nodes and 
arbitrarily allocate "0", "1" and "2" values for "empty", "cross" and "nought". In contrast, the 
AANNS analyst would specify both an input array and an output array each of a 3x3 square grid 
with eight-way spacial symmetry. (The diagram below illustrates the logical net structure before 
allocation of any intermediate nodes.)

 The arrays would be specified as each having two binary elements of the indicator data type to 
represent "cross", "nought" or "empty", the latter by being neither "cross" nor "nought". The binary 
indicator type is chosen to avoid integers which would otherwise wrongly infer a potential 
arithmetic relationship. Additionally the analyst would declare the "cross" binary element to be 
twinned with the "nought" to indicate (two-way) logical symmetry.

The above diagram demonstrates the combined 16 way symmetry for tic tac toe. AANNS detects 



and rejects symmetrically logical duplicates in the training data. The intermediate node and link  
structure is automatically configured to give the same logical answer whichever symmetrical  
version of novel data  is presented. Taken in stages this is not so difficult to understand.

First off let us examine the basic logical structure for our example in a little more detail :

The diagram above shows part of the physical assignment of some of the secondary nodes to 
implement the primary nodes in the previous node diagram. The left-hand column represents the A 
input primary node and the right-hand column the Z output primary node. AANNS uses the same 
structure for each and every element of the 3x3 array. The content of the x-coordinate and y-
coordinate integer nodes varies from element to element. Without symmetry, the content of these 
nodes would be generated to form conventional column and row numbers. With symmetry, the 
logical coordinates are as given in the table below :

1,1 1,2 1,1

1,2 2,2 1,2

1,1 1,2 1,1

As regards the "cross" and "nought" nodes, during training, when a new link is added to one of 
these nodes, then it is automatically added to the other. When a new link and new subordinate node 
is added, then a new link with a new subordinate node is added to the other. When a link weight is 
altered on any mirrored link, then the other link is also altered. Similarly, deletions are also 
automatically managed in tandem.

Whatever the shape of the intermediate structure that evolves, it will be automatically applied to  
each element of the 3x3 array in the same way. Thus it is impossible to train one symmetrical grid 
position adequately but not another. But this is not the whole story.

The logical essence of an array is the potential interaction between the elements. To allow the links  
and intermediate nodes to usefully evolve, the AANNS pre-sets connections between adjacent 
iterations of the expression of the logical net. The diagram below shows the detail for our tic tac toe 
example:



Two sets of 4 input and 4 output integer nodes are assigned, the first set for orthogonal connections 
(N E S W) and the second set for diagonal connections (NE SE SW NW). The easiest way to 
understand what is going on is to imagine one instance of a specific element expression. AANNS 
contains iterative logic which connects, for example, the S input node to the N output node from an 
adjacent intersection. In that adjacent expression, the S input node is connected to another adjacent  
expression via the adjacent N output node. This continues until the AANNS detects the edge of the 
array. In other words, the logic is used for each column, row and both diagonals, all in two 
directions.



Symmetry dictates that whatever happens (regarding links and nodes) connected to one of the 
direction nodes, it must be equally applied to the others in the set (orthogonal or diagonal), this on 
top of each link and node update also being equally applied to the "nought" and "cross" nodes 
owing to their logical twinning.

The full list of topology types it is intended that AANNS covers at a first implementation is :

singleton single entity - not an array

heap array with no spatial organisation, each element independent of the others

line one dimensional array with optional left/right symmetry

square grid two dimensional square array with up to eight-way symmetry.

rectangular grid two dimensional rectangular array with up to four-way symmetry

A line is useful, for example, for greyhound race information where the trap position is deemed 
significant. A rectangular grid would be used for processing any picture information. Additionally 
variable size arrays can be catered for - AANNS then automatically allocates an array size integer 
node.

Together, the data types allow a wide range of problems to be efficiently represented. A more 
general method of topological specification (very difficult!) is deemed not necessary for inclusion 
in a first implementation.

Please note that the AANNS analyst does not need to know how the nodes and links are organised. 
This is automatically done. But the analyst does need to understand how to declare the data in the 
schema. Understanding when to declare an array (rather than say a heap) and with what symmetry 
is crucial. However, anybody that can grasp the concepts of arrays and of symmetry should have 
little difficulty in operating the AANNS.



COMPREHENSIVE NET LOGIC

There are many different types of commercial neural net systems, each oriented towards specific 
types of problem depending on their practical success. If it is to have a chance of coping well across 
a wide variety of types of problem, a general purpose system must include more types of logical 
elements than is commonly supplied. We have already some of the relevant AANNS features, but 
here we will complete the list.

The link weight by modification during training gives the capability of proportional logic. The 
summation of link products to give node input obviously caters for addition and subtraction. Not 
mentioned so far, is that then the node input is raised to the power given by a trainable exponent 
component, thus catering for exponential logic. However, one of the most important features is the 
expression of logic by automatically modifying the link structure. There is complete freedom in 
allocating levels, because routinely, any node can be modified by addition or removal of links 
regardless of level. Normally the restriction is that links must flow from input to output without 
looping, but a backward facing link or loop iteration feature is included for when it is automatically  
detected to be beneficial. So iterative logic is catered for too!

Another important feature is the initial structure given to the net before training. Singleton input  
nodes are of course connected directly to each singleton output node. (Intermediate nodes may 
result from training.) Array input nodes are also connected to all output nodes. For array output 
nodes the array size is equated to the input array size. For singleton output array nodes connected to 
array input nodes, the sum of the output from all the element links is taken. Array output nodes are 
connected directly to all input nodes, but additionally an intermediate singleton node linked to the  
array output node and all input nodes is created.

Perhaps the most important feature is that previously trained nets compatible with the input data 
automatically produce additional input to the net under training. Thus sub-nets effectively act as  
nodes in a hierarchy of nets. Thus an application can be trained in stages. This is an important 
concept to grasp. Given realistic time limits for training, the size of individual nets is limited and  
can solve only relatively easy problems. To solve more complex fare, it is fundamentally necessary 
to build a net in stages, just as it is necessary to teach a human student by a whole series of lessons, 
each lesson building on the previous ones. To illustrate this point we shall return to our tic tac toe 
example:

It is unlikely that our tic tac toe example will require further training, but for the sake of illustration,  
suppose we are dissatisfied with the achieved performance. What to do?

Assuming there is an adequate amount of training data given an adequate time to train, we must 
concede that the problem is perhaps too steep for a one hit solution. We must first train our net 
system to notice things that might help it in its final deliberation. This is best determined by 
examining the mistakes the net makes. Suppose we find that mistakes occur most often on rows and 
columns occupied by two symbols (combinations of noughts and crosses). We might guess that the 
net is only aware of immediate adjacent patterns. Thus we could decide to "pre-train" the net to 
count the number of each symbol in the best row, column or diagonal. Then on reapplying the 
original data, there is a much better chance of the net creating the correct logic.

The table below shows a minimal amount of data to create the counting perception :

Note for example, that when the "O" and "X" counts are both equal to 1, the empty position is 
unsuitable for either side. Also note that a count of 2 for the opposition requires an immediate 



block. These observations hint at the possible steps in logic that the net might take.

Having successfully created the sub-net, the original net is again trained using the initial training 
data. In general, the AANNS analyst need not specify which sub-nets are appropriate for connection 
to the original net. The AANNS itself automatically detects the suitability of the O and X count 
output nodes and connects them as derived input nodes to the original net. (Matching types of 
nodes is a complex business which we will skip over here!)

In general it is envisaged that acolyte nets will accrue sub-nets enshrining fundamental perceptions 
which will be automatically invoked for solving newly presented problems. It is perhaps obvious 
that our tic tac toe example would be a good sub-net for solving the game "connect five" where the 
aim is to achieve five symbols in a row on a much larger array (the size of array making the 
conventional computer technique of brute force lookahead very slow except on a supercomputer). It 
is less obvious, but actually the case, that the collection of simple "visual logic" nets can underpin 
very complex problem solving, not dissimilar to human capabilities - for example in deciphering 
hand writing.



EXPANSION AND CONTRACTION PHASES

The idea of limiting the expansion of the net structure has been introduced in the "THE 
PARSIMONIOUS STRUCTURE PRINCIPLE" section. The logic for expanding and contracting 
the neural net during training is quite complex, but to give you, the reader, some flavour of how the 
AANNS goes about these key tasks, the following simplified overview is offered.

The first thing to understand, is that the AANNS keeps a copy of each optimal working net 
structure as defined by their performance rating and related to their number of links. An optimal 
working net is one that has a performance rating better than any other net that has a fewer number 
of links. Thus, if and when a new optimal working net is produced from a training expedition, it 
may invalidate previously optimal working nets that have insufficient performance ratings, which 
are then removed from the set of optimal working nets.

After a training expedition, an attempt is made to discover a candidate link for deletion (from any of  
the set of optimal working nets) that is judged would not degrade performance by too great a 
margin. If such a link is found, it is removed to form a new net structure which is then trained. 
However, if such a link is not found, a search is made for a position where a link or a node can be 
added such that it is deemed potentially to be of benefit. Again, after alteration the new structure is  
trained. When no new optimal working net is produced and there are no suitable candidate positions 
for either contraction or expansion, then the active set may be added to from the pending set, or 
when this is calculated as being unlikely to be beneficial, the load set may be expanded by robbing 
the reference set. Eventually it will be calculated that robbing the reference set is probably 
counterproductive, at which point the ANNS ceases training and presents the best net for actual 
use. (Note that the best net may not be one of the current optimal working nets. In order to 
guarantee validity, best nets use the gold standard of the reference set for evaluation instead of the 
pending set. They take no part in the selection for the training so that they cannot be compromised. 
Every newly trained net structure is tested to see if it is the best, i.e. better than the current kept best  
net, regardless of whether it is optimal or not.)

Next we shall turn to a little more detail on how links for trial deletion are chosen :

Consider the above diagram of a subsection of an existing optimal working net. First to notice is 
that, if the AANNS selects link DE, then links AD and BD along with node D are also made 
redundant. The fact that three links would be deleted gives a positive factor of three to be included 
in the calculation as to the desirability of choosing link DE. However the determination of the main 
criterion for selection candidates is as follows:



A selection set is chosen at random from the load set to be expressed and back-propagated. For 
each record expression, a net score is accumulated as to when the input quantity from the DE link is 
a help or a hindrance to achieving the back-propagated target input for the E node. The less helpful, 
the more likely the link will be chosen. The actual odds calculated also depend on the previous 
success of training for the links chosen according to their helpfulness quotient. Lastly, a 
randomising factor is included according to how well previous predictions have fared. Thus the 
more accurate predictions were, the more likely the selection will be rejected if the calculated odds  
are insufficient. Otherwise more links will tend to be selected.

Not all links are examined. Any selection where removal of links and nodes would produce a net 
structure that has already been trained, is vetoed. This, of course, includes all links in any one 
optimal net structure that have previously been chosen but have subsequently failed to produce a 
new optimal working net. Eventually (or quite soon) AANNS will determine that no further 
contraction is likely to produce results so attention is turned to expanding the net :

The above diagram shows a subsection of an optimal neural net with a potential candidate 
additional link XC. The X node might be another intermediate node in the same net (existing input  
and output links not shown) or any other node in the same net structure (other than A, B or C), or 
indeed any compatible derived input node (an output node from another already trained net). We 
will ignore the possibility of creating loops and here confine our explanation to a simple 
connection.

The suitability of the XC link is checked out in a similar fashion as used for evaluating removal of 
links. Again use is made of the same selection set, expressed and back-propagated. Two net scores 
are accumulated, one assuming a very small positive link weight for XC, and one assuming a very 
small negative link weight. Each result is calculated according to whether the input quantity from 
the XC link is a help or a hindrance to the back-propagated target input for the C node. The best net 
score is taken. The more helpful, the more likely the link will be chosen. 

If selected, the XC link is introduced with a zero weight, thus logically giving the same results for 
the new net structure as before, but when further trained, the link weight will be evolved to 
potentially improve the performance rating.



Adding a single link is just one way of expanding a net structure. Another way is to clone nodes that 
are "in conflict" :

The expressed input quantities (from the selection set) to the intermediate node D (above) may 
sometimes match the back-propagated target (when active), sometimes be too large, and sometimes 
be too small. Generally, as a consequence of the previous training, the number of times the input 
quantity is too large is usually roughly matched by the number of times the input quantity is too 
small. The method to determine the desirability of cloning node D is to accumulate a benefit/dis-
benefit count, for positive or negative input quantity amendment across the expressed and back-
propagated selection set. In other words, a trial positive quantity is added to the input quantity to the 
D node and an accumulation count is incremented if of benefit as regards meeting the target 
quantity, and decremented if of dis-benefit. This is repeated for a trial negative quantity to form a 
second accumulation count. If either of these counts is greater than zero, the D node is judged to be 
"in conflict" and able to benefit from being split up.

If the D node is detected as "in conflict", and also chosen above other candidates the previous net 
structure is modified thus:

The D node is split into D1 and D2 nodes. The superior and subordinate links are duplicated. The 
weights of the subordinate links, D1-E, D1-F, D2-E, D2-F are halved. This logically gives the same 
results for the new structure as before but allows the weights and future structural changes for the 
superior and subordinate links for D1 and D2 nodes to evolve separately. Note that the new 



structure has five more links than the old and that this is factored into the selection calculation (the  
less added links the better).

If the node D (above) were to be an output node, with no subordinate nodes, a different expansion is 
required :

The original D node is retained but two intermediate node clones are added preceding it and 
connected to it by links D1-D and D2-D each with a weight of exactly one half. Again, this 
logically gives the same results as for before, but allows further evolution under training. Notice 
that this is one way in which extra intermediate levels are evolved.

There are a couple more expansion methods but for the sake of brevity, we shall forego further 
description. Suffice it to say that from all the expansion candidates the most promising is chosen. 
Eventually the AANNS runs out of candidates and the next level of control, concerned with 
expanding the active set, takes over.



AANNS vs CONVENTIONAL PROGRAMMING

Put simply, AANNS automates the coding part of programming and greatly improves the testing of 
applications. However, there is a lot more to say :

Conventional programming can be split into :
• a requirements specification (what the end user wants).
•  a design specification ( a high level document to spell out how the programmer should go 

about his task in satisfying the requirements).
• the coded program (as produced by the programmer to fit the design specification).
•  test data (to verify that the program does what it is supposed to do).

However, for complex systems, most of the testing is carried out by the end user (the Beta release 
and beyond). In my opinion this encourages the developers to skimp. What would be nice is a 
development regime which guarantees exhaustively tested applications before unleashing them on 
the public.

AANNS satisfies this aspiration because the training data has to be fulsome for the system to create 
the required standard of result. If the test data is insufficient then, almost by definition, the product 
cannot be produced. Although the training may take longer and thus cost more than conventional 
testing carried out by the developer, the developer saves far more by eliminating program coding 
costs, and by producing a more reliable product, more directly suited to end users (no compromises 
necessary to reduce coding complexity), and thus should benefit from more sales.

Conventional programming has an even bigger problem when it comes to adding enhancements to 
an existing application. The enhancements themselves are not the problem. Making enhancements 
compatible with what has gone before is! A new programmer has the unenviable task of trying to 
understand how things work before daring to add to it. All sorts of academic computer language 
"solutions" have been developed to help (C++ springs to mind) but, if anything, the ability to 
superficially add yet more complex functions without immediate ructions, whilst still missing 
deeper semantic inconsistencies, has made the situation even worse.

In contrast, AANNS retains the original test data and together with new data examples for the new 
functions, reliably "recodes" the whole application. No human is required to understand how the 
system works. The proof that the application does work is part of what the AANNS does!

Unfortunately, most professional designers wish to understand the neural net logic generated so that 
they personally can "verify" that logic. Although widespread, in my opinion, this is an unreasonable 
cultural expectation. Nowadays systems are often too big and too complex for one person, or even a 
team, to thoroughly understand. But the desire to keep control is a strong one.

(As an aside, despite the difficulty in understanding neural net logic, neural nets used on 
applications, beyond the capabilities of conventional programming, are often deconstructed with the 
aim of discovering the logic needed to tackle the problem with the aim of reverting back to 
conventional techniques. Given the accuracy of current neural net systems perhaps this is justified 
but this may not be the case in the near future.)

Conventional programs give very accurate answer most of the time, but when they do go wrong the 
errors can be arbitrarily big - thus the million pound gas bill! Current neural net systems tend not to 
go wildly wrong but do tend to give approximate answers (all of the time). In some applications this 
is OK but, for accounting applications and the like, this is unacceptable. However trials of 
precursors to AANNS show that neural nets can be trained to give answers to any desired accuracy. 



Unfortunately, there still remains the trust issue. This is a major block to marketing the system and 
will take a very long time to overcome.

Instead of trying to sell the AANNS lock stock and barrel, the AANNS trainer can be retained in-
house. Just the end product neural nets (embedded with the expression algorithm) can be sold on 
their own functional merits. This has the benefit that the difficult bit, the training algorithm, is safe  
from plagiarism. But of course, the work to develop new applications is non-trivial, even though it 
should be quicker than conventional techniques. Commercially, by far the best applications for 
consideration are those that conventional programs and current neural net systems do badly or not at 
all.

The practicality of developing novel applications relies on two things. First, the ease of collecting 
good training data. Second, the ability to teach the AANNS by breaking up complex problems into 
constituent steps. This capability is mostly satisfied by the combination of the qualities held by 
good teachers who really understand their subject matter at a fundamental level, and the detective  
work utilised by good systems analysts to get to the root of how things actually work.



AANNS APPLICATION - HORSE RACING PUNTER BOT

I first became interested in horse racing puntership, when I discovered a report that there are over 
2,000 professional punters in the UK making a very healthy living. On investigation, explanations 
for their success based on race fixing and insider knowledge proved to be unfounded. (I can justify 
this assertion statistically and at length but for now trust me!) You do need to know which horses 
are being entered for a race just for the outing, but once you understand the basics, this information 
can easily be determined by anyone. No, what seemed to be the common factor was the striking 
combination of the professional punter's ability to bet intuitively, whilst being mathematically aware  
of the which bets were better value and, last but not least, the ability to exercise a lot of discipline as  
to when and how often to bet. If you could only simulate these characteristics on a computer?

In contrast to the professionals, amateur punters always seem to have reasons for their bets, are 
often unaware of mathematical value, and change their betting behaviour depending on whether 
they won or lost their last bet. Having reasons for your bet might seem to be a good thing - until you 
understand how we humans tick. My speculation is that we can train a part of our organic neural net 
to come up with high quality answers, but we have no conscious awareness of the neural net logic 
that achieves this. Because we are social animals, we rationalise in order to justify our actions to 
others and by reflection ourselves. Unfortunately these rationalisations tend to strangle the more 
useful intuitions. Professional punters tend to be further along the autism spectrum and mostly do 
not feel the need to justify themselves. Anyhow, for whatever reason, they do not second guess their 
intuitive selections.

With the advent of Betfair on the internet, you can usually bet directly against the mass of amateur  
punters. (There are reports of rigging but only in isolated cases).  Betfair charges up to 5% on your 
winnings so this indicates how much better you need to be than your opponents in order to break 
even. However, the desired margin is much higher when you factor in overheads, payment for your 
time, and insurance against having a bad run in the short term. Some years ago I used a crude 
precursor to AANNS to pretend bet on 1000 races. The results gave a profit of 10%,  i.e. on an 
initial pool of £1000 this would turn into £1100 given bet sizes fixed to one hundredth of the current 
pool size. However this was using high street bookmaker's odds with a margin to overcome of 
between 20 and 35 %. AANNS should do a lot better and fully compensate for the development and 
running costs within a short time period.

The actual initial training is not envisaged to be onerous. But most of the work entailed will be in 
collecting the training data and updating this on a regular basis. There are prospects of gathering the 
data from online databases by writing a conventional programming utility. You can find most of the 
data on racing cards. Adding information on the racing venue e.g. left-handed, uphill at finish etc.  
should be little trouble. Organising a database to keep the history of each horse (and perhaps jockey 
and stable) in a suitable form is perhaps the bulk of the programming work.

In summary, the advantage of this scheme is that no marketing is involved. The main drawback is 
the amount of data that has to be captured and regularly updated.



AANNS APPLICATION - POKER BOT

A main attraction of this potential application is that it too requires no marketing. Furthermore, it  
requires relatively little training data without the need for constant updating.

The existing poker bots on the internet make a buck or two from detecting and picking on novice 
players, and by using comprehensive statistical calculations to evaluate each hand. However, strong 
poker players can work out during the course of play that the bot (of course pretending to be a 
human player) is very predictable and then have the ability to take advantage. (If the bot tries to 
behave more randomly, then it can loose its advantage of knowing the statistics associated with each 
hand.)

I am not a very good poker player. My main fault is that I find it hard to fold hands. I like to call so 
that I can satisfy my curiosity as to what my opponents hold. However, I do not have to be a good 
player to teach the AANNS. I (or any other AANNS analyst) just need to take note of those experts 
who understand and can convey the key concepts of the game, in order to define the AANNS 
schema, and then train using appropriate data collected mainly from professional games.

OK, that is perhaps a little simplistic! Actually one might start with training to produce the 
mathematical odds of winning the hand taking into account the number of players in, or potentially 
in the pot, versus the pot size. This would put the resulting net on a par with existing poker bots. 
From this base more sophisticated perceptions can be added.

The first of these is to detect, at each hand, to what degree players are likely to be "tight" or "wild".  
Some of the factors involved are position in betting order, stack size, previous hand success or 
failure, and response time (the only "tell" available over the internet). This categorisation is a step 
on the way to trying to guess what range of cards the opponent may be holding. This is best trained 
from data collected from televised events where the viewer is privy to more of the cards players are 
holding than in conventional games and can access expert commentators views on tightness of play.

The next step is to collect what the commentators judge the range of hands that it is reasonable for a 
player to be holding ignoring any viewer privileged information. This can be padded out with 
guesses of what other players were guessing given their betting patterns but excluding the situations 
where players are judged to fold solely to protect their stack.

Finally the net can be trained to fold, call, check, raise, or raise all in, in accordance with what  
happened in professional games, perhaps modified by expert commentary, given that professional 
do occasionally make obvious mistakes. Please understand that what you should do as a player is 
quite different from what you should do if you could see your opponent cards face up. Apart from 
developing statistical perceptions, training a net on the latter case (cards face up) is a mistake. We 
are trying to mimic professional play which includes amongst other things the ability to bluff!

The success of the training depends mainly on how good the expert exposition of the game is. 
Identifying the key concepts is key to being able to simulate the sophisticated play that professional 
players exhibit. Thus the development of this application involves some risk, but if it were to be 
successful, it would be tantamount to a license to print money with very little ongoing effort 
expended.



AANNS APPLICATION - GO BOT

If you are unfamiliar with the board game, go, you might want to just skim this section.

A number of very influential people would take a great deal of notice of a genuinely strong go 
playing algorithm. Because chess has succumbed to the artificial method of brute force lookahead 
using the massive calculating power of the modern computer, go which is not as vulnerable to this 
technique, is now held up as the showcase challenge to prove an advance in artificial intelligence. 

Recent developments in go programs using the Monte Carlo Tree Search method have been 
successful in as much as the best is currently holding a 4 dan status for 15 seconds per move on 
KGS, an online go server. The method has major weaknesses in that very good moves can be 
followed by unrelated poorer quality moves. This is due to the fact that the search cannot really 
perceive a "plan" and is relying on randomly finding a good lookahead path, which given the 
number of possible variations, is not always possible. Nevertheless, a 4 dan level, albeit blitz, is 
surprisingly good. But with a method relying mainly on brute force lookahead, the question is 
whether progress will stall at a lookahead horizon. Unfortunately the current success, such as it is, 
will muddy the argument that go is a benchmark for testing truly intelligent algorithms.

Go is a difficult problem, far too difficult to solve with a single trained net. AANNS gives the 
prospect of teaching a hierarchy of neural nets a raft of intermediate basic perceptions, the equal of 
those possessed by strong human go players. To start with there are a lot of very basic perceptions 
(all on an intersection level) to train for, such as liberties (for empty intersection), proximity to 
black, proximity to white, single intersection local eye, single intersection local false eye etcetera  
etcetera. An equally large number of more tricky perceptions awaits :- liberties in general,  
connectability, half, one, one and half, two eye shapes, damezumari, group identity labelling, 
territory quality and size, miai, sente, ko evaluation, ko threats, kikashi, etcetera etcetera. New 
concepts such as sector lines and ideas from Global Connectivity Strategy, can be added to help 
with fuseki. Training to intelligently encode (rather than rote ingest) joseki might also help.

Potentially, there is one small fly in the ointment - how to mimic human lookahead. First note that  
humans are generally terrible at serial lookahead (trying out each hierarchical branch and sub-
branch) which is why there is a market for tsume go problems which any decent computer 
algorithm can solve in a millisecond by serial lookahead of the relatively very few possible 
permutations (- but in real games, most of the time, it is a totally different story!). Neural nets,  
whether human or artificial, are just not efficient at simulating the serial or "brute force" type of  
lookahead. This begs the question - so what do humans do with lookahead?

From what I can make out, in a semeai (a race to kill or be killed) the typical amateur 5 dan 
(relatively a strong player not quite up to professional standard), first intuitively identifies potential  
key moves in the sequence to win the race. Then the player tries to string these key moves together 
to make a playable sequence. This is not necessarily done in a specific order but the result is a serial 
set of moves, or "line". If the end result is a happy one, the player is likely to recheck the key moves 
for his opponent, taking into account that better moves may be found. Assuming feasible 
alternatives have been found, the process of stringing these moves together to form a single 
playable line is repeated. If at any point, the end result is not a happy one, the player will revisit his  
own key moves, and taking into account the end result, will try to intuit alternative key moves so as 
to string together a new alternative line.

Thus the human type of lookahead is very limited but very efficient compared with a computer 
algorithm. The reading strength of the human player lies mainly in their skill of identifying key 
moves (the stronger the player, the fewer and more discerning key candidate moves are considered) 



and to a lesser extent, how many lines the player can process in the time available. With the ability  
to learn candidate key moves, if taught properly, and the ability to apply iterative logic for a multi  
layered approach to find modified candidate key moves, the AANNS, at least in theory, should be 
capable of mimicking human lookahead. It is even possible to teach brute force lookahead, but with 
the downside of potentially very slow execution times (thus running out of time) - the same 
problem humans have. The big question is whether brute force lookahead needs to be used at all. 
From observation of the standards achievable playing lightning go, and the errors made by strong 
players in semeai reading, my judgement is brute force lookahead is probably not needed. However, 
if that judgement were demonstrated to be wrong, the facility could be artificially added (hard-
wired) outside of the AANNS net. Here is potentially one case where conventional programming is 
better than a neural net. Even with hard-wired brute force lookahead, human lookahead should still  
be implemented because of its use as a perception on which to base complex group status analysis 
and other sophisticated perceptions.

Overall there appears to be rather a lot of work to define and teach the necessary number of 
hierarchically built perceptions, especially since many key perceptions are poorly understood or 
even totally ignored by even the strongest players (none of whom have an inkling of how they 
manage to intuit good moves). It requires a lot of work and a lot of aptitude to train a gifted human 
player up to professional standard, so perhaps we should not underestimate the similar effort needed 
to train a net using AANNS. It is also a drawback having to explicitly define a large number of 
intermediate perceptions, where in human training, it appears that the student can, at a subconscious 
level, find and utilize key perceptions without formal identification, albeit at a very slow rate. (If a  
teacher can identify these key perceptions either explicitly or by well chosen examples, this is of 
enormous advantage.) This aspect of the human neural net probably equates to detecting the 
equivalent of output nodes in the middle of a subnet by connecting preferentially to neurons that 
exhibit a concentration of data flow. This approach deserves further research, but is not thought vital 
for achieving the immediate goal of an amateur dan level go playing program.



AANNS APPLICATION - OPTICAL CHARACTER RECOGNITION

OCR utilities take images of text such as held on a digital photo file, e.g. JPEG file, and try to 
convert them into code, a mere couple of bytes encoding each character, suitable for a document 
file. For example:

Here is a blow up of an image of a piece of black text. You can clearly see that it is made up of tiny 
squares (pixels) of differing colours (or if confined to monochrome, shades of grey), but when 
viewed at the correct scale, it gives the appearance to the human perception of the text "pictures." as  
viewed on this page. The input to the OCR utility is just a series of numbers defining the colour for 
each individual pixel.

At the heart of any OCR utility is some form of a neural net. This gives a much better performance 
than conventional programming, but still can have a significant failure rate. Suppose you want to 
capture this very document from paper onto your computer so that you can edit it (or whatever). So 
you decide to use your scanner with its OCR software. On a page of plain text you should expect a 
failure rate of say half of one percent in character recognition. Although much quicker than typing 
the whole thing in, the produced text page still needs to be manually checked and the 20 or so 
errors, out of the 4,000 or so characters typically found on a A4 sheet, need to be corrected. But 
worse, on pages with diagrams, or tables, the OCR utility will tend to struggle as typically they are 
easily confused! So why doesn't the neural net software do better? There are two main reasons :

The first reason is that the existing neural net technology is not up to the whole of the task, so a lot 
of conventional programming is used to prepare the data for the net, and this inevitably simplifies 
and therefore loses information that might otherwise be of theoretical use in determining the 
boundaries of each character on the page.(Note that OCR works much better with single characters 
with generous surrounding space.)

The second reason is that the neural nets are one hit trained, using artificial methods not particularly  
designed to simulate human perception. So it is not too surprising that the OCR utility does not 
reproduce function that can see what a human can readily perceive. (In theory, they also might be 
able to decipher text undecipherable to humans - but this is not that useful!)

The following diagram shows text which is easy for humans to decipher but difficult for existing 
OCR utilities :



The big idea for utilising AANNS is to simulate the human way of perceiving text, or at least 
something a lot closer to it than current methods manage. It is expected that, if achieved, this would 
produce a performance level of nigh on 100% for straightforward text, quite apart from being able 
to convincingly tackle a far wider range of difficult text image input. Apart from dealing with the 
example shown above, such a capability would enable imaged text to be captured from web 
browsers, which would form an important part of capturing test data for further applications. So 
what are the main steps needed to form an OCR acolyte system?

The first step is to give the acolyte the ability to perceive very basic graphic features of a printed 
page (with or without  picture/diagram content) in the way cognitive studies have demonstrated 
humans operate. The first feature of human perception is the overwhelming propensity, at any 
excuse, to see lines (e.g. canals on Mars!). Give us a few dots and we will automatically join them 
up!

The three diagrams below shows the first two stages that the AANNS might go through in a much 
longer multi-stage process to train a final net to reliably read imaged text to the same standard as a  
human can achieve.

The first diagram shows the pixels of a small part of a scanned image page. When printed or 
displayed at the correct scale this portion will appear as an apparently pristine capital A. The first  
task is to train a net to perceive both straight and curved lines despite blurring and/or the minor 
breaks common in poor quality copies. With our capital A in this font, only straight lines should be 
discovered. The net is trained to represent lines by the minimum number of contiguous (orthogonal 
or diagonal) array elements. This is shown in the second diagram (superimposed on the original 
data).

The third diagram shows the next stage in training to determine further features each of which it has 



been demonstrated, by cognitive studies, that human perception relies on. Notice that the features 
are independent of scale, and are already probably sufficient to define a capital A. However, at this 
stage it is sufficient to detect isolated character-like entities, whilst noting potential character  
candidates.

The next stage is to train a net to perceive the boundaries defining word-like entities and character  
clusters. If you look at the very first diagram showing the "pictures." pixels, you might notice that 
the "t" and the "u" are physically joined so these will need to be demarcated for further processing.

The above description is only a brief introduction to the way AANNS can solve this complicated 
problem. After much development, the end result should be a highly saleable OCR utility. Because 
the method is based on human perception, a little more development should produce a superior 
handwriting recognition utility. Because there is no reliance on artificial brute force methods, just  
the final trained neural net, the speed of operation should be excellent. Nor should there be any need 
for the end user to train the net for their own writing style.

In summary, given a thorough approach to training the net in stages, there is little risk that the aims 
described above cannot be achieved. It is, however, a lot of work. Marketing is also heavily 
involved. But the financial rewards would be considerable.



GLOSSARY

AANNS Acolyte Artificial Neural Net System
acolyte system The system where multiple linked neural nets are held forming a multi-

layer perception capability to provide a final neural net with the necessary 
data to meet the requirements of a complex application.

active component A component that is a candidate for training adjustment as found by 
back-propagation.

active set That part of the load set that is currently or recently been used in training.
attributes Items of the AANNS net structure modified in each training ascent, i.e. 

weights and exponents. a.k.a. components
back-propagation The process of identifying the training adjustment needed for each 

component by reverse logic using targets progressively projected from 
the output nodes back along the links and intermediate nodes in the 
direction towards the input nodes.

best net For any specific application, the best performing trained net to date.
components Items of the AANNS net structure modified in each training ascent, i.e. 

weights and exponents. a.k.a. attributes.
current active set That part of the active set that is currently being used for training.
derived input nodes The automatically detected and assigned output nodes from expressed 

neural nets held by the acolyte acting as input to the subject neural net.
exponent component  A node attribute variable which performs an exponent operation on the 

node input data
expression Each input record when submitted to a neural net interpreter is 

expressed via the specific neural net logic to form an output record.
identity type A type of primary node input mapped onto an indicator binary node for 

indicating the presence of the identity, such as a place name, in an input 
record.

inactive component A component that is logically determined as being an ineligible candidate 
for training adjustment as found by back-propagation.

indicator binary node A secondary input node that accepts only one or zero as data.
input node A neural net structure item for receiving input values.
intelligence The degree of scope for appropriate behaviour of an agent for any given 

set of knowledge and any given amount of processing used by that agent.
intermediate node A neural net structure item connected by links input, intermediate or 

output nodes
internal set The set of training records (all other possible records forming the external 

set).
link A neural net structure item for transmitting processed data between nodes.
load set After allocation of the reference set, the set of records available for active 

training.
neural net interpreter A type of computer program that takes input data and processes it via any 

specified neural net structure to produce the desired application output.
neural net trainer A type of computer program that takes an application's training data and 

specified schema and then produces the whole neural net structure 
necessary to produce the general solution for the application.

optimal working net An intermediate trained net that has optimal performance for any given 
net structure considering the number of links in that structure

output node A neural net structure item for transmitting output values.
pending set That part of the load set yet to be used in training.
primary node A class of a node defining some logical purpose, actually implemented via 

secondary nodes.



recent active set Records that have previously been used in training.
reference set A proportion of the training records (the internal set) reserved for the 

gold standard evaluation of the performance of the load set.
representative data Training data for an application is said to be representative when it 

theoretically contains enough examples of wide enough scope to embody 
the underlying principles that form the solutions to novel data.

schema The specified input and output structure of any particular neural net.
secondary node A fundamental class of node automatically allocated to implement  a 

declared primary node. 
selection set A set of records selected in the course of determining which links and 

nodes to prune.
solution attribute 
topography

The multi-dimensional graph of component values plotted against 
performance.

square grid array A type of of primary node mapped onto secondary nodes for 
implementing a square array structure.

subordinate link A link that receives data from a node is subordinate to that node.
superior link A link that transmits data to a node is superior to that node.
threshold A gate value associated with any one specific node to filter its input data.
training ascent Using the same logical net structure, the series of component values, that 

were progressively modified to form steps on a path of improving 
performance, the lowest point being a base and the highest a peak.

training expedition The series of training ascents for the same logical net structure.
training step units The values of the different components expressed in one currency, 

dynamically modified in order to help the process of determining the 
candidate training steps in the solution attribute topography.

weight A multiplier value associated with any one specific link applied to that 
link's input data to produce that link's output data.


